On Amicable and Sociable Numbers*

By Henri Cohen

Abstract

An exhaustive search has yielded 236 amicable pairs of which the lesser number is smaller than $10^{8}, 57$ pairs being new.

It has also yielded 9 new sociable groups of order 10 or less, of which the lesser number is smaller than 6.10^{7}; the 9 sociable groups are all of order 4.

The sequence of iterates of the function $s(n)=\sigma(n)-n$ starting with 276 has also been extended to 119 terms.

Introduction. Let $n \geqq 2$ be an integer, and

$$
\sigma(n)=\sum_{d \mid n} d, \quad s(n)=\sigma(n)-n=\sum_{d \mid n ; d \neq n} d .
$$

We wish to study the behavior of the sequence:

$$
\begin{aligned}
a_{0}(n) & =n \\
a_{k+1}(n) & =s\left(a_{k}(n)\right)
\end{aligned}
$$

which will be called the aliquot series of n.
It is clear that if this sequence is bounded as $k \rightarrow \infty$ it is periodic, since $a_{k}(n)$ can take only a finite number of values.

Consequently the sequence can have essentially three distinct behaviors:
(a) The sequence converges, i.e. there exists a k for which $a_{k}=1$ (or equivalently a_{k-1} prime).
(b) The sequence is periodic of period t : there exists k_{0} such that

$$
a_{k+t}=a_{k} \quad \text { for all } k \geqq k_{0} .
$$

If one can take $k_{0}=0$, the sequence is purely periodic; in this case: if $t=1, n$ is a perfect number, if $t=2,(n, s(n))$ is a pair of amicable numbers, and in general the t-uplet $\left(a_{0}, \ldots, a_{t-1}\right)$ is a sociable group of order t.
(c) The sequence is unbounded.

Results on Amicable Numbers. Two recent papers [6], [7], listed all pairs of amicable numbers up to 10^{6} and 10^{7} respectively.

Table 1 extends these lists and contains all amicable pairs with the lesser number between 10^{7} and 10^{8}. The 57 pairs marked with an asterisk are not found in the lists given by Escott [1], Poulet [2], Garcia [3], Lee [4], Lee [5], and seem to be new.

[^0]TABLE 1

AMICABLE NUMBERS

$$
\begin{aligned}
& 10254970=2.5 .11 .53 .1759 \\
& 10533296=2^{4} \cdot 19 \cdot 34649 \\
& 10572550=2.5^{2} \cdot 19.31 .359 \\
& 10596368=2^{4} .29 .41 .557 \\
& \text { * } 10634085=3^{4} \cdot 5.7 .11^{2} .31 \\
& \text { * } 10992735=3^{2} .5 .13 .19 .23 .43 \\
& \text { * } 11173460=2^{2} .5 .53 .83 .127 \\
& \text { * } 11252648=2^{3} .11 .71 .1801 \\
& 11498355=3^{4} .5 .11 .29 .89 \\
& 11545616=2^{4} \cdot 19.163 .233 \\
& 11693290=2.5 .7 \cdot 167047 \\
& 11905504=2^{5} .13 .28619 \\
& 12397552=2^{4} .23 .59 .571 \\
& \text { * } 12707704=2^{3} .17 .41 .43 .53 \\
& \text { * } 13671735=3.5 .7^{2} .11 .19 .89 \\
& \text { * } 13813150=2.5^{2} \cdot 13.79 .269 \\
& 13921528=2^{3} \cdot 19.67 .1367 \\
& 14311688=2^{3} \cdot 17 \cdot 47.2239 \\
& \text { * } 14426230=2.5 .7 .13 .83 .191 \\
& 14443730=2.5 .7^{3} .4211 \\
& 14654150=2 \cdot 5^{2} \cdot 7 \cdot 149 \cdot 281 \\
& 15002464=2^{5} \cdot 37.12671 \\
& \text { * } 15363832=2^{3} .11 .71 .2459 \\
& 15938055=3^{2} \cdot 5 \cdot 7 \cdot 19.2663 \\
& \text { * } 16137628=2^{2} \cdot 13.23 .103 .131 \\
& 16871582=2.7^{2} \cdot 13.17 .19 .41 \\
& \text { * } 17041010=2.5 .7 .31 .7853 \\
& \text { * } 17257695=3.5 .7 .13 .47 .269 \\
& 17754165=3^{2} \cdot 5 \cdot 11 \cdot 13.31 .89 \\
& 17844255=3^{2} \cdot 5 \cdot 11.13 .47 .59 \\
& 17908064=2^{5} \cdot 53.10559 \\
& \text { * } 18056312=2^{3} \cdot 17 \cdot 103 \cdot 1289
\end{aligned}
$$

$$
\begin{aligned}
& 10273670=2 \cdot 5 \cdot 11 \cdot 59 \cdot 1583 \\
& 10949704=2^{3} \cdot 29 \cdot 109 \cdot 433 \\
& 10854650=2^{2} \cdot 5^{2} \cdot 31 \cdot 47 \cdot 149 \\
& 11199112=2^{3} \cdot 53 \cdot 61 \cdot 433 \\
& 14084763=3 \cdot 7 \cdot 11^{2} \cdot 23 \cdot 241 \\
& 12070305=3^{2} \cdot 5 \cdot 13 \cdot 47 \cdot 439 \\
& 13212076=2^{2} \cdot 31 \cdot 47 \cdot 2267 \\
& 12101272=2^{3} \cdot 67 \cdot 107 \cdot 211 \\
& 12024045=3^{4} \cdot 5 \cdot 11 \cdot 2699 \\
& 12247504=2^{4} \cdot 491 \cdot 1559 \\
& 12361622=2 \cdot 7^{2} \cdot 13 \cdot 31 \cdot 313 \\
& 13337336=2^{3} \cdot 107 \cdot 15581 \\
& 13136528=2^{4} \cdot 359 \cdot 2287 \\
& 14236136=2^{3} \cdot 107 \cdot 16631 \\
& 15877065=3^{2} \cdot 5 \cdot 17 \cdot 19 \cdot 29 \cdot 113 \\
& 14310050=2 \cdot 5^{2} \cdot 29 \cdot 71 \cdot 139 \\
& 13985672=2^{3} \cdot 19 \cdot 101 \cdot 911 \\
& 14718712=2^{3} \cdot 23 \cdot 167 \cdot 479 \\
& 18087818=2 \cdot 7 \cdot 31 \cdot 71 \cdot 587 \\
& 15882670=2 \cdot 5 \cdot 19 \cdot 179 \cdot 467 \\
& 16817050=2 \cdot 5^{2} \cdot 179 \cdot 1879 \\
& 15334304=2^{5} \cdot 227 \cdot 2111 \\
& 16517768=2^{3} \cdot 53 \cdot 163 \cdot 239 \\
& 17308665=3^{2} \cdot 5 \cdot 11 \cdot 73 \cdot 479 \\
& 16150628=2^{2} \cdot 13 \cdot 31 \cdot 43 \cdot 233 \\
& 19325698=2 \cdot 7^{2} \cdot 19 \cdot 97 \cdot 107 \\
& 19150222=2 \cdot 7 \cdot 13 \cdot 43 \cdot 2447 \\
& 17578785=3 \cdot 5 \cdot 7 \cdot 23 \cdot 29 \cdot 251 \\
& 19985355=3^{2} \cdot 5 \cdot 13 \cdot 127 \cdot 269 \\
& 19895265=3^{2} \cdot 5 \cdot 13 \cdot 71 \cdot 479 \\
& 18017056=2^{5} \cdot 79 \cdot 7127 \\
& 18166888=2^{3} \cdot 19 \cdot 107 \cdot 1117 \\
& 1
\end{aligned}
$$

TABLE 1 (Continued)

* $18194715=3^{2} \cdot 5.7 .11 .59 .89$ $18655744=2^{9} .83 .439$
* $20014808=2^{3} \cdot 11.79 .2879$ $20022328=2^{3} \cdot 17 \cdot 23 \cdot 37 \cdot 173$
$20308995=3^{3} \cdot 5 \cdot 7.21491$
$21448630=2.5 .7 .131 .2339$
* $22227075=3^{3} \cdot 5^{2} \cdot 13 \cdot 17 \cdot 149$ $22249552=2^{4} \cdot 13.41 .2609$
$22508145=3^{3} \cdot 5 \cdot 11 \cdot 23.659$
$22608632=2^{3} \cdot 19.23 .29 .223$
$23358248=2^{3} \cdot 23 \cdot 37 \cdot 47.73$
$23389695=3^{3} \cdot 5 \cdot 7 \cdot 53 \cdot 467$
* $23628940=2^{2} \cdot 5 \cdot 37^{2} .863$
* $24472180=2^{2} .5 .17 .167 .431$
$25596544=2^{7} .311 .643$
$25966832=2^{4}$. 29. 191.293
$26090325=3^{2} \cdot 5^{2} \cdot 17 \cdot 19 \cdot 359$
* $28118032=2^{4} .47 .139 .269$
* $28608424=2^{3} \cdot 13 \cdot 139.1979$
$30724694=2.7 .11 .13 .103 .149$
$30830696=2^{3} \cdot 13.521 .569$
$31536855=3^{2} \cdot 5.7 .53 .1889$
* $31818952=2^{3} .11 .41 .8819$ $32205616=2^{4} \cdot 17.167 .709$
* $32642324=2^{2} .11 .13 .149 .383$ $32685250=2.5^{3} \cdot 13 \cdot 89.113$
* $33501825=3^{2} \cdot 5^{2} \cdot 7.89 .239$ $34256222=2.7 .11 .13 .71 .241$
* $34364912=2^{4} .43 .199 .251$ $34765731=3^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17.227$
* $35115795=3^{3} \cdot 5 \cdot 11 \cdot 13 \cdot 17.107$
$35361326=2.7 .11 .13 \cdot 17.1039$

$$
\begin{aligned}
& 22240485=3^{2} \cdot 5 \cdot 31 \cdot 107 \cdot 149 \\
& 19154336=2^{5} \cdot 619 \cdot 967 \\
& 21457192=2^{3} \cdot 47 \cdot 149 \cdot 383 \\
& 2282 \cdot 3432=2^{3} \cdot 1367 \cdot 2087 \\
& 20955645=3^{3} \cdot 5 \cdot 17 \cdot 23 \cdot 397 \\
& 23030090=2^{2} \cdot 5 \cdot 19 \cdot 53 \cdot 2287 \\
& 24644925=3^{3} \cdot 5^{2} \cdot 29 \cdot 1259 \\
& 25325528=2^{3} \cdot 587 \cdot 5393 \\
& 23111055=3^{3} \cdot 5 \cdot 11 \cdot 79 \cdot 197 \\
& 25775368=2^{3} \cdot 1439 \cdot 2239 \\
& 25233112=2^{3} \cdot 37 \cdot 85247 \\
& 25132545=3^{3} \cdot 5 \cdot 17 \cdot 47 \cdot 233 \\
& 27428276=2^{2} \cdot 17 \cdot 251 \cdot 1607 \\
& 30395276=2^{2} \cdot 47 \cdot 107 \cdot 1511 \\
& 25640096=2^{5} \cdot 67 \cdot 11959 \\
& 26529808=2^{4} \cdot 47 \cdot 35279 \\
& 26138475=3^{2} \cdot 5^{2} \cdot 11 \cdot 59 \cdot 179 \\
& 28128368=2^{4} \cdot 59 \cdot 83 \cdot 359 \\
& 29603576=2^{3} \cdot 23 \cdot 349 \cdot 461 \\
& 32174506=2^{2} \cdot 7 \cdot 13 \cdot 17 \cdot 10399 \\
& 31652704=2^{5} \cdot 449 \cdot 2203 \\
& 32148585=3^{2} \cdot 5 \cdot 7 \cdot 102059 \\
& 34860248=2^{3} \cdot 97 \cdot 167 \cdot 269 \\
& 34352624=2^{4} \cdot 2147039 \\
& 35095276=2^{2} \cdot 17 \cdot 47 \cdot 79 \cdot 139 \\
& 34538270=2 \cdot 5 \cdot 13 \cdot 379 \cdot 701 \\
& 36136575=3^{2} \cdot 5^{2} \cdot 19 \cdot 79 \cdot 107 \\
& 35997346=2 \cdot 7 \cdot 11 \cdot 23 \cdot 10163 \\
& 34380688=2^{4} \cdot 47 \cdot 131 \cdot 349 \\
& 36939357=3^{2} \cdot 7 \cdot 13 \cdot 23 \cdot 37 \cdot 53 \\
& 43266285=3^{3} \cdot 5 \cdot 53 \cdot 6047 \\
& 40117714=2^{2} \cdot 7 \cdot 13 \cdot 53 \cdot 4159 \\
& 2
\end{aligned}
$$

TABLE 1 (Continued)

$35373195=3^{2} \cdot 5 \cdot 11 \cdot 13.23 .239$
$35390008=2^{3} .19 .23 .53 .191$
$35472592=2^{4} .43 \cdot 47.1097$

* $37363095=3^{2} .5 .7 .11 .41 .263$
* $37784810=2.5 .7 .539783$
$37848915=3^{2} \cdot 5.13 .23 .29 .97$
* $38400512=2^{9} \cdot 179.419$
* $38637016=2^{3} \cdot 11.359 .1223$
$38663950=2.5^{2} \cdot 13 \cdot 17.3499$
* $38783992=2^{3} \cdot 13 \cdot 37 \cdot 10079$ $38807968=2^{5} \cdot 37 \cdot 73 \cdot 449$
* $43096904=2^{3} \cdot 17.41 .59 .131$
* $44139856=2^{4} .29 .251 .379$ $45263384=2^{3} \cdot 17.59 .5641$
* $46237730=2.5 .7 .11^{2} .53 .103$
* $46271745=3^{2} .5 .13 .19 .23 .181$
* $46521405=3^{3} .5 .7 .19 .2591$
* $46555250=2.5^{3} \cdot 7 \cdot 37.719$
* $46991890=2.5 .11 .29 .14731$
* $48639032=2^{3} \cdot 13.29 .16127$
$48641584=2^{4} .29 .104831$
* $49215166=2.7 .11 .13^{2} .31 .61$
* $50997596=2^{2} .13 .19 .71 .727$ $52695376=2^{4} \cdot 17 \cdot 151.1283$ $56055872=2^{6} .79 .11087$
* $56512610=2.5 .7 .11$ 23. 3191
$56924192=2^{5} \cdot 13.193 .709$
* $58580540=2^{2} \cdot 5.23 .347 .367$
* $59497888=2^{5} .41 .101 .449$
* $63560025=3^{3} \cdot 5^{2} \cdot 17.29 .191$
$63717615=3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 43.149$
$66595130=2.5 .7 .31 .30689$

$40105845=3^{2} \cdot 5 \cdot 13 \cdot 179 \cdot 383$
$39259592=2^{3} .71 .69119$
$36415664=2^{4} .53 .42943$
$45663849=3^{2} .7 .11 .131 .503$
$39944086=2.7 .13 .41 .53 .101$
$39202605=3^{2} \cdot 5 \cdot 13 \cdot 19.3527$
$38938288=2^{4} .83 .109 .269$
$40678184=2^{3} \cdot 29.271 .647$
$43362050=2.5^{2} \cdot 59.14699$
$41654408=2^{3} \cdot 47 \cdot 139 \cdot 797$
$40912232=2^{3} \cdot 37.89 \cdot 1553$
$46715896=2^{3 .} \cdot 53.239 .461$
$44916944=2^{4} .83 \cdot 149.227$
$46137016=2^{3} \cdot 19.433 .701$
$61319902=2.7 .83 .113 .467$
$49125375=3^{2} \cdot 5^{3} \cdot 13 \cdot 3359$
$53011395=3^{3} \cdot 5.31 .53 .239$
$55880590=2.5 .103 .227 .239$
$48471470=2.5 \cdot 19^{2} \cdot 29.463$
$52967368=2^{3} .59 .293 .383$
$48852176=2^{4} \cdot 47.167 .389$
$55349570=2.5 .31 .61 .2927$
$51737764=2^{2} \cdot 13 \cdot 23.181 .239$
$56208368=2^{4} .3513023$
$56598208=2^{6} .383 .2309$
$75866014=2.7^{2} .774143$
$64562488=2^{3} \cdot 283.28517$
$70507972=2^{2} .23 .521 .1471$
$61953512=2^{3} \cdot 29.97 .2753$
$65003175=3^{3} \cdot 5^{2} \cdot 23 \cdot 53.79$
$66011985=3^{2} \cdot 5 \cdot 13 \cdot 19.5939$
$74824390=2.5 .31 .59 .4091$

TABLE 1 (Concluded)

* $66854710=2.5 \cdot 13^{3} \cdot 17.179$
$67729064=2^{3} \cdot 13.431 \cdot 1511$
$67738268=2^{2} \cdot 13 \cdot 17 \cdot 19.37 .109$
$68891992=2^{3} \cdot 13 \cdot 23 \cdot 83 \cdot 347$
$71015260=2^{2} .5 .23 .263 .587$
$71241830=2.5 \cdot 11.19 .89 .383$
* $72958556=2^{2} .11 .19 .197 .443$
$73032872=2^{3} \cdot 11.71 .11689$
$74055952=2^{4} .23 .61 .3299$
* $74386305=3^{2} \cdot 5.7 .17 .29 .479$
* $74769345=3^{3} .5 .7^{2} .89 .127$
$75171808=2^{5} \cdot 53 \cdot 127.349$
$75226888=2^{3} \cdot 11 \cdot 59.14489$
* $78088504=2^{3} \cdot 13.31 .53 .457$
* $78447010=2.5 .17 .19 .149 .163$
* $79324875=3^{2} \cdot 5^{3} \cdot 7^{2} \cdot 1439$
$80422335=3^{3} \cdot 5 \cdot 7.85103$
$82633005=3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 1187$
$83135650=2.5^{2} \cdot 13.79 .1619^{\circ}$
* $84521745=3^{3} .5 .7 .11 .47 .173$
* $84591405=3^{3} \cdot 5.17 .29 .31 .41$
$86158220=2^{2} .5 .41 .105071$
* $87998470=2.5 .7 .29 .67 .647$
* $88144630=2.5 \cdot 7^{2} \cdot 29.6203$
$89477984=2^{5} .59 .83 .571$
$90437150=2.5^{2} \cdot 19.23 .4139$
* $91996816=2^{4} .29 .331 .599$
$93837808=2^{4} .19 .83 .3719$
$95629904=2^{4} .37 .67 .2411$
$95791430=2.5 .7 .17 .101 .797$
* $96304845=3.5 \cdot 7^{2} \cdot 13.10079$
$97041735=3^{2} \cdot 5 \cdot 7 \cdot 71.4339$

```
\(71946890=2.5 .17 .83 .5099\)
\(69439576=2^{3} \cdot 23.107 .3527\)
\(79732132=2^{2} \cdot 19.263 .3989\)
\(78437288=2^{3} .587 .16703\)
\(85458596=2^{2} .41 .47 .11087\)
\(78057370=2.5 \cdot 17.359 .1279\)
\(74733604=2^{2} \cdot 11 \cdot 53.73 .439\)
\(78469528=2^{3} .59 .83 .2003\)
\(78166448=2^{4} .197 .24799\)
\(87354495=3^{2} \cdot 5 \cdot 19.71 .1439\)
\(82824255=3^{3} \cdot 5 \cdot 17 \cdot 151.239\)
\(77237792=2^{5} .479 .5039\)
\(81265112=2^{3} \cdot 53.137 .1399\)
\(88110536=2^{3} \cdot 167.65951\)
\(80960990=2.5 .11 .491 .1499\)
\(87133365=3^{2} \cdot 5 \cdot 11 \cdot 103 \cdot 1709\)
\(82977345=3^{3} \cdot 5 \cdot 11.71 .787\)
\(104177619=3^{2} \cdot 7.13 .131 .971\)
\(85603550=2.5^{2} \cdot 19.25 i \cdot 359\)
\(107908335=3^{3} \cdot 5 \cdot 383.2087\)
\(89590995=3^{3} \cdot 5 \cdot 13 \cdot 71.719\)
\(99188788=2^{2} .23 .43 .25073\)
\(102358010=2.5 .47 .89 .2447\)
\(102814490=2.5 \cdot 37.269 .1033\)
\(92143456=2^{5} \cdot 1637.1759\)
\(94372450=2.5^{2} \cdot 23.137 .599\)
\(93259184=2^{4} .79 .89 .829\)
\(99899792=2^{4} .1399 .4463\)
\(97580944=2^{4} .67 .227 .401\)
\(115187002=2.7 \cdot 17.113 .4283\)
\(96747315=3 \cdot 5 \cdot 7^{2} \cdot 23.59 .97\)
\(97945785=3^{2} \cdot 5.7 .239 .1301\)
```

TABLE 2
NEW SOCIABLE GROUPS

$$
\begin{aligned}
& 2115324=2^{2} \cdot 3^{2} \cdot 67 \cdot 877 \\
& 3317740=2^{2} \cdot 5 \cdot 165887 \\
& 3649556=2^{2} \cdot 107 \cdot 8527 \\
& 2797612=2^{2} \cdot 331 \cdot 2113 \\
& 4938136=2^{3} \cdot 7 \cdot 109 \cdot 809 \\
& 5753864=2^{3} \cdot 23 \cdot 31271 \\
& 5504056=2^{3} \cdot 17 \cdot 40471 \\
& 5423384=2^{3} \cdot 53 \cdot 12791 \\
& 18048976=2^{4} \cdot 11 \cdot 102551 \\
& 20100368=2^{4} \cdot 919 \cdot 1367 \\
& 18914992=2^{4} \cdot 37 \cdot 89 \cdot 359 \\
& 19252208=2^{4} \cdot 1203263 \\
& 28158165=3^{3} \cdot 5 \cdot 7 \cdot 83 \cdot 359 \\
& 29902635=3^{3} \cdot 5 \cdot 7 \cdot 31643 \\
& 30853845=3^{3} \cdot 5 \cdot 11 \cdot 79 \cdot 263 \\
& 29971755=3^{3} \cdot 5 \cdot 11 \cdot 20183
\end{aligned}
$$

$$
\begin{aligned}
& 46722700=2^{2} \cdot 5^{2} \cdot 47 \cdot 9941 \\
& 56833172=2^{2} \cdot 11 \cdot 53 \cdot 24371 \\
& 53718220=2^{2} \cdot 5 \cdot 2685911 \\
& 59090084=2^{2} \cdot 43 \cdot 343547
\end{aligned}
$$

Note Added. After the first version of this paper was submitted to Math. Comp., I was informed that Paul Bratley, John McKay, and Fred Lunnon had independently computed the amicable pairs from 10^{7} to 10^{8}. Their 128 pairs agree exactly with mine.

Results on Sociable Numbers. Until now only two groups of sociable numbers were known, respectively of order 5 and 28 ; both were found by Poulet [8]. I have made an exhaustive search for sociable groups of order $t \leqq 10$ of which the lesser number is smaller than 6.10^{7}. This search has yielded 9 new groups, which interestingly enough are all of order 4. They are given in Table 2.

This relative abundance of order 4 sociables compared with other orders is rather surprising and calls for some comments.

Let us say that a sociable group is a regular group of order t if it is of the form $\left(a \cdot n_{1}, \cdot \ldots \cdot a \cdot n_{t}\right)$ with each n_{i} prime to a for $1 \leqq i \leqq t$ and n_{1}, \ldots, n_{t} have no common factor. Then a theorem of Dickson [10], states that there are no regular groups of odd order >1. On the other hand, of the 236 amicable pairs up to $10^{8}, 193$ are regular, and of the 9 sociables of order 4, 7 are regular. Regular groups thus seem to form the large majority of groups of even order 2 and 4, so Dickson's theorem can
explain, at least partly, why only one group has been found of odd order >1. It does not explain why no groups of order 6,8 or 10 have been found.

Results on Unbounded Sequences. It has been conjectured by Catalan (see revision by Dickson [10]) that the aliquot series of n is never unbounded. It is known to be bounded for $2 \leqq n \leqq 275$. The smallest n for which the behavior is not known is 276. G. A. Paxson [9] has calculated 67 terms of this sequence. I have extended this to 119 terms and found:

$$
a_{118}(276)=2133148752623068133100 .
$$

Conclusion. From these results a number of conjectures can be made.
Let $A(x)$ be the number of amicable pairs of which the smaller number is less than x; then empirically one can conjecture:

Conjecture 1. There exists $\beta>0$ such that

$$
\log A(x) \sim \beta \cdot \log (x)
$$

This conjecture of course implies the as yet unknown fact that there exists an infinity of amicable pairs.

From Table 1 and preceding tables a least square method gives

$$
\beta=0.29 \ldots
$$

A heuristic computation of β would be welcome.
Conjecture 2. There exists an infinity of sociable groups of order 4.
This is a particular case of a general conjecture of Erdös [11]. Furthermore in the same paper Erdös states that the density of sociable groups of any order is 0 . Combining this with Catalan's conjecture as revised by Dickson one obtains:

Conjecture 3. For almost all n (i.e. with density 1) the associated sequence converges.
These conjectures seem very difficult to prove.
Acknowledgment. The author wishes to express his gratitude to Mr. D. Feldmann for his constant help and support during the computations for this work.

[^1]
[^0]: Received August 19, 1969, revised November 6, 1969.
 AMS Subject Classifications. Primary 1005, 1042, 1043, 1063.
 Key Words and Phrases. Amicable numbers, sociable numbers, aliquot series.
 *This work was supported in part by the Comité de Génie Biologique et Médical de la D.G.R.S.T (Convention n° 6801307).

[^1]: Institut de Biologie Moléculaire
 C.N.R.S.

 9 Quai Saint Bernard
 Paris (5^{e}), France

 1. E. B. Escott, "Amicable numbers," Scripta Math., v. 12, 1946, pp. 61-72. MR 8, 135.
 2. P. Poulet, "43 new couples of amicable numbers," Scripta Math., v. 14, 1948, p. 77.
 3. M. García, "New amicable pairs," Scripta Math., v. 23, 1957, pp. 167-171. MR 20 \# 5158.
 4. E. J. Lee, "Amicable numbers and the bilinear diophantine equation," Math. Comp., v. 22, 1968, pp. 181-187. MR 37 \# 142.
 5. E. J. Lee, "The discovery of amicable numbers," J. Recreational Math. (To appear.)
 6. J. Alanen, O. Ore, \& J. Stemple, "Systematic computations on amicable numbers," Math. Comp., v. 21, 1967, pp. 242-245. MR 36 \# 5058.
 7. P. Bratley \& J. McKay, "More amicable numbers," Math. Comp., v. 22, 1968, pp. 677-678. MR 37 \# 1299.
 8. P. Poulet, L'intermédiaire des math., v. 25, 1918, pp. 100-101.
 9. G. A. Paxson, Annapolis Meeting of the Mathematical Association of America, May 5th 1956.
 10. L. E. Dickson, "Theorems and tables on the sum of the divisors of a number," Quart. J. Math., v. 44, 1913, pp. 264-296.
 11. P. Erdös, "On amicable numbers," Publ. Math. Debrecen, v. 4, 1955, pp. 108-111. MR 16, 998.
